As our population becomes more health conscious, its desire to seek minimally invasive dentistry has increased tremendously over the past 2-3 years. This is a good thing. People don’t want their teeth whittled down anymore if they can avoid it. Dr. Michael Schuster often states that what people really “want” is no dentistry! However, occlusal disease is rampant and the demand for practitioners who can predictably treat this is increasing exponentially. It is the author’s opinion, based on what he sees in his office, that at least 85% of the population suffers from some degree of occlusal disease. The resulting symptoms can be tooth hypersensitivity, myofacial pain and tension, and/or temporomandibular discoordination and the subsequent symptoms associated with that; popping and clicking of the joint(s), pain in the joints, stiffness or ringing in the ear, among others. The signs can be tooth wear, abfractions, gingival recession bone loss, and a decrease in the lower third of a person’s facial height.

Minimally Invasive Rejuvenation Dentistry

Minimally Invasive Rejuvenation Dentistry (MIRD) is a wonderful way to treat occlusal disease and its resulting symptoms and signs while salvaging as much natural tooth structure as possible. It is conservative (often times no prepping is needed); esthetic, predictable; and much more affordable than the traditional full mouth rehabilitations done in porcelain.

The Four Axioms of Minimally Invasive Rejuvenation Dentistry

The term “Axioms” is described as follows, and the author is paraphrasing from Webster’s New World Dictionary, College Edition: “An established principle, or law that is self evident.” The self evidence stated here was first introduced by Dr. Robert Lee in 1990.3 Since these axioms were based upon the findings of completely healthy and asymptomatic stomatognathic systems, they received immediate acceptance in the community of esthetic dentistry. The early acceptance had continued to grow among an ever-increasing number of dentists who maintain these axioms in their practices and in functional and esthetic presentations.2-4 According to Lee, the ideal stomatognathic system shares three commonalities:

1. Stable condylar position – superior, anterior, and medially braced
2. Proper tooth form, as it occurs in nature, with unaltered anatomy
3. Adequate vertical dimension of occlusion that allows the correct vertical and horizontal overbite and proper anterior-posterior relationship of the maxillary and mandibular teeth

A fourth axiom has been identified in recent years with the ever-increasing awareness of obstructive sleep apnea and the development of cone beam computed tomography. This fourth axiom is:

4. The airway

When these axioms are present in a masticatory system, we see neurovascular release, combined with the reduced force on the dentition due to a more vertical chewing pattern and true anterior proprioceptive guidance re-established. This results in the preservation of individual teeth and maximum facial esthetics. It also allows conservative restorations, since the shearing forces are minimized or eliminated altogether. We are also observing and increase in the minimally restricted area of the airway. While these observations are at this time, anecdotal, they are promising and more research must be done in this area.

The functional goal of MIRD is to maximize anterior guidance and to verticalize the posterior segment with the normal physiologic position of the condyles in their most stable centric relation (CR).2 It has been documented by Williamson that the activity of the masseter and temporalis elevating muscles can be reduced only when the posterior disclosure is obtained by appropriate proprioceptive anterior guidance.2 When proprioceptive anterior guidance is present, the posterior segment is verticalized, thereby eliminating eccentric contacts on cusp tips and incisal edges. Williamson also states that it is not the contact of the canines that decreases the activity of the temporals and masseter muscles, because in true proprioceptive anterior guidance the canines do not contact at all. Rather, it is the elimination of posterior eccentric contacts that results from the proprioceptive anterior guidance.7 Adherence to these three axioms and awareness of the fourth (airway) allowed the author to develop a minimally invasive rejuvenation practice on his patients. The result was not only a dramatic improvement in the function and appearance of the dentition, but also the treatment eliminated headaches and myofacial pain and tension. The relaxation of the facial muscles becomes evident in the relaxed general appearance.
CASE REPORT

CLINICAL EXAMINATION AND DIAGNOSIS: SUBJECTIVE AND OBJECTIVE FINDINGS

A 52-year old white female patient (Figures 1a and 2) presented with the following complaint: “I do not like the appearance of my smile. My teeth are wearing down and my face is getting shorter. I get headaches frequently and have tension in my face and neck constantly.” The patient was living a healthy life-style, was taking no medication, and the medical history was unremarkable. A thorough preclinical interview revealed that the patient suffered from chronic headaches, myofacial pain, and tension. Dental records were obtained and a comprehensive clinical examination was performed. The full periodontal examination included probing depths, plaque indices, bleeding indices, head and neck muscle examination, oral cancer examination, occlusal analysis, TMJ evaluation, and a tooth-by-tooth examination. Facial dimension analysis was completed as well. The patient was sent to an imaging center for cone beam computed tomography images, and a subsequent airway and TMJ radiology report was obtained from Dr. David Hatcher (Beam Readers, Inc.).

At the time of examination, her mouth was caries free. The periodontal health was excellent; plaque and bleeding absence was over 90%. Examination of the dentition revealed generalized moderate to severe enamel wear. There was a reduction in over-jet; anterior proprioceptive guidance was absent and the patient was functioning with anterior contact guidance (Figure 3). No popping, clicking, or joint crepitus noises were present. The temporomandibular joint was not diseased or deranged; however, through CBCT imaging, it was discovered that her habitual occlusion was distracting the condyles out of their SAM position downward and posteriorly (Figure 4). The overall joint anatomy was normal.

DIAGNOSIS/ASSESSMENT

Although there were no joint noises or joint pain, it became apparent that the enamel wear and subsequent myofacial symptoms resulted from a mandible-to-cranial base discrepancy, most likely caused, or at least exacerbated by, a malocclusion. The lack of anterior proprioceptive guidance and the resulting posterior eccentric interferences lead to muscle hyperactivity, resulting in enamel wear and facial muscle tension, as well as distraction of the condyles during maximum intercuspation. Fortunately, the patient did not suffer from a compromised airway, as the airway study showed a minimal restricted area of 153mm². (Figure 5)

While airway was not an issue in this particular case, the author is observing time and time again that stabilizing the condyles and relaxing the muscles can result in an increase in the airway. (Figures 6, 7) These are CBCTs of one of the author’s patients. Figure 6 shows a pre-treatment minimally restricted area of 43.7mm². Figure 7 shows a post-treatment minimally restricted area of 147.7mm².

This is over a 300% increase in the minimally restricted area of 147.7mm². (Figure 5) Figure 7. Post-treatment CBCT images and airway study shows a patent airway with a minimally restricted area of 147.7mm². (Figure 5)

Figure 8 shows a pre-treatment minimally restricted area of 43.7mm². Figure 7 shows a post-treatment minimally restricted area of 147.7mm². This is over a 300% increase in the minimally restricted area.

INITIAL TREATMENT PLAN

The initial treatment plan was to achieve an optimal stable condylar position, using a therapeutic maxillary condylar centering orthotic (C2O). (Figure 8) The C2O is a condylar CR repositioning splint. When worn consistently throughout 24-hour periods and adjusted regularly, it will allow the mandibular positioning muscles to relocate the condyles into the optimal stable condylar position (OSCP). The patient wore the splint for a period of six weeks to allow full seating of
Minimally Invasive Rejuvenation Dentistry

Dr. Hal Stewart

By tracking condylar movement from centric relation to centric occlusion from the hinge axis position, the author was able to predictably alter the VDO in a scientific manner. This ‘fulcrum effect’ resulted in occlusal posterior avoidance patterns, as the patient was posturing the mandible forward to avoid the second molar contacts. This posturing resulted in the hyperactivity of the masseter, temporalis, and lateral pterygoid muscles, and the subsequent attrition of the enamel. The teeth were suffering primarily from the occlusal disease of attrition. Therefore, a conservative approach with little to no iatrogenic removal of tooth structure was used to restore the lost enamel.

The centric stops and test positions were verified on the anterior teeth prior to moving to the posterior teeth. (Figure 14)

Upon completion of the anterior teeth, the posterior positive corono-plasties were completed in the following order: left mandibular posteriors, right maxillary posteriors, right mandibular posteriors, left maxillary posteriors, right maxillary canines, left maxillary canines. Once these were completed, the three crowns were completed and rejuvenation provisional fabrics were completed.

These figures are average and serve as dependable markers, but they should not be construed as ‘automatic’ in the restoration of every dentition.

The patient had only a moderate amount of dental restorations. Most teeth were virgin and had no caries. The teeth were suffering primarily from the occlusal disease of attrition. Therefore, a conservative approach with little to no iatrogenic removal of enamel was pursued to restore the lost tooth structure. Three existing crowns would be replaced as well.

The lengths of teeth in an average dentition, common to all masticatory systems, have been established in the literature. They were determined by Lee through observation and documentation of healthy stomatognathic systems.10

- Maxillary central incisors: 11mm – 13mm, with an average of 12mm
- Maxillary canines: 11mm – 13mm, with an average of 12mm
- Mandibular central incisors: 9mm – 12mm, with an average of 10mm
- Mandibular canines: 11mm – 15mm, with an average of 12mm
- Vertical dimension of occlusion, or VDO (as measured from the cec of the maxillary central incisor to that of the opposing mandibular central incisor): 16mm - 20mm with an average of 18mm
- Vertical overbite: 3mm
- Horizontal overbite, or over jet: 2mm

These averages are published and serve as dependable markers, but they should not be construed as ‘automatic’ in the restoration of every dentition.

With Lee’s human biologic model serving as a guideline, and the final VDO decided upon through a thorough evaluation of the post-CZO hinge axis mounted study models was pursued and a complete diagnostic wax up was completed.

RESTORATIVE TREATMENT: ADDITIVE CORONOPLASTY (25 TEETH); CROWNS (3 TEETH)

Following completion of the diagnostic wax-up, the desired vertical dimension of 17.8mm a clear polyvinyl siloxane stint was fabricated over each wax-up. These stints would be used to transfer the newly formed biologic tooth morphology from the wax-up to the mouth. The scope of this article does not allow for the specifics of the technique to be illustrated.

The anterior teeth were restored first. No teeth were prepped and the positive corono-plasties were completed with no anesthesia needed. The centric stops and test positions were verified on the anterior teeth prior to moving to the posterior teeth. (Figure 14)

Upon completion of the anterior teeth, the posterior positive corono-plasties were completed in the following order: left mandibular posteriors, right maxillary posteriors, left mandibular posteriors, right maxillary posteriors. Once these were completed, the three crowns were completed and rejuvenation provisional fabrics were fabricated.
Minimally Invasive Rejuvenation Dentistry

The post-treatment test positions show anterior disclusion in eccentric movements, evidencing the restoration of the anterior proprioceptive guidance (Figure 15). As the occlusion is verticalized and the anterior proprioceptive guidance is restored to the chewing system, the condensing and shearing forces on individual teeth are minimized, permitting the conservative treatment option illustrated in this case with very minimal enamel preparation.

The increase in the length of the teeth, along with the increased vertical dimension of occlusion, created a result that was beautiful and functional. The patient reported that the myofacial tension and the headaches were eliminated completely. This well-being was the result of a favorable neuromuscular relaxation of the facial and neck muscles. The patient was also pleased with the increased tooth length and the appearance of her new smile (Figures 16 and 17).

CONCLUSION

This patient’s smile could have been improved by cosmetic dentistry alone. But simply performing cosmetic dentistry in this case would, in the author’s opinion, have been a ‘Band-Aid’ approach to treatment, addressing the effect (enamel attrition), but not the cause (mandible-to-cranial-base-created malocclusion). Cosmetic dentistry alone would have done nothing to improve the patient’s myofacial pain, headaches, among other symptoms. And the wear on the patient’s opposing teeth would have been exacerbated by any type of porcelain restorations.

The traditional full mouth restorative treatment would have consisted of crowns, veneers, and onlays. All of these require aggressive tooth preparation. By applying the four axioms of Minimally Invasive Rejuvenation Dentistry an accurate diagnosis and a minimally invasive, conservative, and affordable treatment plan was implemented and completed. The esthetic goals of the patient were achieved, while improving the patient’s health, comfort, and well-being.

REFERENCES

1. Dawson, Peter. In: Dawson, P. TMJ And Occlusal Therapy, Quintessence.

Dr. Hal Stewart is a 1989 graduate of Baylor Dental College. He is co-founder and co-director of The Texas Center for Occlusal Studies and Minimally Invasive Dentistry (www.txcos.com).

Dr. Stewart has studied at the Pankey Institute, and he completed extensive cosmetic training at LVI. He is a Level 4 Graduate of Orognathic Bioesthetics International.

A member in the AACD for the past 20 years, Dr. Stewart served as president of the Texas Academy of Cosmetic Dentistry. He is also a mentor and faculty member of the Schuster Center in Scottsdale, AZ. He also lectures extensively worldwide for Ultradent.

Dr. Stewart practices Minimally Invasive Rejuvenation Dentistry in Flower Mound, TX, and can be reached at:

6011 Morriss Road, Suite #200
Flower Mound, TX 75028
Tel: 972-565-1957
e-mail: hal.stewart@verizon.net
website: www.halstewart.com
The Texas Center: www.txcos.com